
Chapter 6

Saving Space

As computers get ever faster, we ask ever more of them: a higher-
resolution film streamed in real time, a faster download, or the same
experience on a mobile device over a slow connection as we have at
home or in the office over a fast one. When we talk of efficiency, we
are concerned with the time taken to do a task, the space required
to store data, and knock-on effects such as how often we have to
charge our device’s battery. And so we cannot simply say “things
are getting faster all the time: we need not worry about efficiency.”

An important tool for reducing the space information takes up
(and so, increasing the speed with which it can be moved around)
is compression. The idea is to process the information in such as way
that it becomes smaller, but also so that it may be decompressed –
that is to say, the process must be reversible.

Imagine we want to send a coffee order. Instead of writing “Four
espressos, two double espressos, a cappuccino, and two lattes”, we
might write “4E2DC2L”. This relies, of course, on the person to
whom we are sending the order knowing how to decompress it. The
instructions for decompressing might be longer than the message
itself, but if we are sending similar messages each day, we need
only share the instructions once. We have reduced the message
from 67 characters to 7, making it almost ten times smaller.

This sort of compression happens routinely, and it is really just
a matter of choosing a better representation for storing a particular
kind of information. It tends to be more successful the more uniform
the data is. Can we come up with a compression method which
works for any data? If not, what about one which works well

65



66 Chapter 6. Saving Space

for a whole class of data, such as text in the English language, or
photographs, or video?

First, we should address the question of whether or not this
kind of universal compression is even possible. Imagine that our
message is just one character long, and our alphabet (our set of
possible characters) is the familiar A,B,C. . .Z. There are then exactly
26 different possible messages, each consisting of a single character.
Assuming each message is equally likely, there is no way to reduce
the length of messages, and so compress them. In fact, this is not
entirely true: we can make a tiny improvement – we could send the
empty message for, say, A, and then one out of twenty-six messages
would be smaller. What about a message of length two? Again, if
all messages are equally likely, we can do no better: if we were to
encode some of the two-letter sequences using just one letter, we
would have to use two-letter sequences to indicate the one-letter
ones – we would have gained nothing. The same argument applies
for sequences of length three or four or five or indeed of any length.

However, all is not lost. Most information has patterns in it, or
elements which are more or less common. For example, most of the
words in this book can be found in an English dictionary. When
there are patterns, we can reserve our shorter codes for the most
common sequences, reducing the overall length of the message.
It is not immediately apparent how to go about this, so we shall
proceed by example. Consider the following text:

Whether it was embarrassment or impatience, the
judge rocked backwards and forwards on his seat.
The man behind him, whom he had been talking
with earlier, leant forward again, either to give him
a few general words of encouragement or some
specific piece of advice. Below them in the hall the
people talked to each other quietly but animatedly.
The two factions had earlier seemed to hold views
strongly opposed to each other but now they began to
intermingle, a few individuals pointed up at K., others
pointed at the judge. The air in the room was fuggy
and extremely oppressive, those who were standing
furthest away could hardly even be seen through it.
It must have been especially troublesome for those
visitors who were in the gallery, as they were forced
to quietly ask the participants in the assembly what
exactly was happening, albeit with timid glances at



Chapter 6. Saving Space 67

the judge. The replies they received were just as quiet,
and given behind the protection of a raised hand.

We shall take as our dictionary the 100 most commonly-used
English words of three or more letters:

00 the 25 there 50 two 75 part
01 and 26 use 51 more 76 over
02 you 27 each 52 write 77 new
03 that 28 which 53 see 78 sound
04 was 29 she 54 number 79 take
05 for 30 how 55 way 80 only
06 are 31 their 56 could 81 little
07 with 32 will 57 people 82 work
08 his 33 other 58 than 83 know
09 they 34 about 59 first 84 place
10 this 35 out 60 water 85 year
11 have 36 many 61 been 86 live
12 from 37 then 62 call 87 back
13 one 38 them 63 who 88 give
14 had 39 these 64 its 89 most
15 word 40 some 65 now 90 very
16 but 41 her 66 find 91 after
17 not 42 would 67 long 92 thing
18 what 43 make 68 down 93 our
19 all 44 like 69 day 94 just
20 were 45 him 70 did 95 name
21 when 46 into 71 get 96 good
22 your 47 time 72 come 97 sentence
23 can 48 has 73 made 98 man
24 said 49 look 74 may 99 think

These words will be compressed by representing them as the
two-character sequences 00, 01, 02, . . . , 97, 98, 99. We don’t bother
with the one and two letter words, common though they are, be-
cause they are already as short or shorter than our codes. We
assume our text does not contain digits, so that any digit sequence
may be interpreted as a code. Any word, text, or punctuation not
in the word list will be rendered literally. If we substitute these
codes into our text, we find a somewhat underwhelming level of



68 Chapter 6. Saving Space

compression:

Whether it 04 embarrassment or impatience, 00 judge
rocked backwards 01 forwards on 08 seat. The 98
behind 45, whom he 14 61 talking 07 earlier, leant
forward again, either to 88 45 a few general 15s of
encouragement or 40 specific piece of advice. Below
38 in 00 hall 00 people talked to 27 33 quietly 16
animatedly. The 50 factions 14 earlier seemed to
views strongly opposed to 27 33 16 65 09 began to
intermingle, a few individuals pointed up to K., 33s
pointed at 00 judge. The air in 00 room 04 fuggy 01
extremely oppressive, those 63 20 standing furthest
away could hardly ever be 53n through it. It must 11
61 especially troublesome 05 those visitors 63 20 in 00
gallery, as 09 20 forced to quietly ask 00 participants in
00 assembly 18 exactly 04 happening, albeit 07 timid
glances at 00 judge. The replies 09 received 20 94 as
quiet, 01 given behind 00 protection of a raised hand.

The original text had 975 characters; the new one has 891. One
more small change can be made – where there is a sequence of codes,
we can squash them together if they have only spaces between them
in the source:

Whether it 04 embarrassment or impatience, 00
judge rocked backwards 01 forwards on 08 seat.
The 98 behind 45, whom he 1461 talking 07 earlier,
leant forward again, either to 8845 a few general
15s of encouragement or 40 specific piece of advice.
Below 38 in 00 hall 00 people talked to 2733 quietly
16 animatedly. The 50 factions 14 earlier seemed
to views strongly opposed to 2733166509 began to
intermingle, a few individuals pointed up to K., 33s
pointed at 00 judge. The air in 00 room 04 fuggy 01
extremely oppressive, those 6320 standing furthest
away could hardly ever be 53n through it. It must 11
61 especially troublesome 05 those visitors 6320 in 00
gallery, as 0920 forced to quietly ask 00 participants in
00 assembly 18 exactly 04 happening, albeit 07 timid
glances at 00 judge. The replies 09 received 2094 as
quiet, 01 given behind 00 protection of a raised hand.



Chapter 6. Saving Space 69

We are down to 880 characters, a reduction of about 10% com-
pared with the original. The top 100 words in English are known
to cover about half of the printed words, in general. We have not
quite achieved that in this example.

Let us try counting the number of each character in our text to
see if we can take advantage of the fact that some letters are more
common than others (our current method makes no use of the fact
that, for example, spaces are very common):

167 space 30 l 10 ,
120 e 24 w 8 .
71 t 19 p 5 k
62 a 19 m 4 j
55 i 19 g 4 T
51 h 19 c 3 q
49 o 18 u 2 x
45 r 15 y 1 W
42 n 13 f 1 K
41 s 13 b 1 I
33 d 10 v 1 B

The space character is by far the most common (we say it has
the highest frequency). The frequencies of the lower case letters are
roughly what we might expect from recalling the value of Scrabble
tiles, the punctuation characters are infrequent, and the capital
letters very infrequent.

We have talked about what a bit is, how 8 bits make a byte, and
how one byte is sufficient to store a character (at least in English).
Our original message is 975 bytes, or 975 × 8 = 7800 bits. We
could encode each of the 33 characters we have found in our text
using a different pattern of 6 bits, since 33 is less than 64, which is
the number of 6-bit combinations 000000,000001,. . . ,111110,111111.
(The number of 5-bit combinations is 32, which is not quite enough.)
This would reduce our space to 975× 6 = 5850 bits. However, we
would have wasted much of the possible set of codes and taken
no advantage of our knowledge of how frequently each character
occurs. What we should like is a code which uses shorter bit pat-
terns for more common characters, and longer bit patterns for less
common ones. Let us write out the beginnings of such a code:

space 0
e 1



70 Chapter 6. Saving Space

t 00
a 01
i 10
h 11
o 000
...

...

There is a problem, though. It is very easy to encode a word;
for example, “heat” encodes as 1110100 (that is, 11 for “h”, 1 for
“e”, 01 for “a”, and 00 for “t”). However, we can decode it in
many different ways. The sequence 1110100 might equally be taken
to mean “eeespaceespace” or “hiispace”. Our code is ambiguous.
What we require is a code with the so-called prefix property – that
is, arranged such that no code in the table is a prefix of another.
For example, we cannot have both 001 and 0010 as codes, since
001 appears at the beginning of 0010. This property allows for
unambiguous decoding. Consider the following alternative code:

space 00
e 010
t 011
a 100
i 101
h 110
o 111
...

...

This code is unambiguous – no code is a prefix of another. The
word “heat” encodes as 110010100011 and may be decoded un-
ambiguously. We can have the computer automatically create an
appropriate code for our text, taking into account the frequencies.
Then, by sending the code table along with the text, we ensure it
may be unambiguously decoded. Here is the full table of unam-
biguous codes for the frequencies derived from our text:

space 111 l 10100 , 000100
e 100 w 00011 . 0101101
t 1011 p 110101 k 11000011
a 0111 m 110100 j 11000001
i 0110 g 110011 T 11000000



Chapter 6. Saving Space 71

h 0100 c 110010 q 01011001
o 0011 u 110001 x 110000100
r 0010 y 010111 W 010110001
n 0000 f 010101 K 010110000
s 11011 b 010100 I 1100001011
d 10101 v 000101 B 1100001010

The information in this table can, alternatively, be viewed as a
diagram:

n

, v

w

r o h

b f

K W

q

.

y

i a

e

l d

t

T j

x

B I

k

u c g m p

s

space

In order to find the code for a letter, we start at the top, adding 0
each time we go left and 1 each time we go right. For example, we
can see that the code for the letter “g” is Right Right Left Left Right
Right or 110011. You can see that all the letters are at the bottom
edge of the diagram, a visual reinforcement of the prefix property.
The compressed message length for our example text is 4171 bits,



72 Chapter 6. Saving Space

or 522 bytes, about half of the original message length. Sending the
tree requires another 197 bits, or 25 bytes. (We do not discuss the
method here.) Of course, the longer the message, the less it matters,
since the message will be so big by comparison. These codes are
called Huffman codes, named after David A. Huffman, who invented
them whilst a PhD student at MIT in the 1950s.

A common use for this sort of encoding is in the sending of
faxes. A fax consists of a high-resolution black and white image.
In this case, we are not compressing characters, but the black and
white image of those characters itself. Take the following fragment:

This image is 37 pixels wide and 15 tall. Here it is with a grid
superimposed to make it easier to count pixels:

We cannot compress the whole thing with Huffman encoding,
since we do not know the frequencies at the outset – a fax is sent
incrementally. One machine scans the document whilst the machine
at the other end of the phone line prints the result as it pulls paper
from its roll. It had to be this way because, when fax machines
were in their infancy, computer memory was very expensive, so
receiving and storing the whole image in one go and only then
printing it out was not practical.

The solution the fax system uses is as follows. Instead of sending
individual pixels, we send, a line at a time, a list of runs. Each run
is a length of white pixels or a length of black pixels. For example,
a line of width 39 might contain 12 pixels of white, then 4 of black,
then 2 of white, then 18 of black, and then 3 of white. We look up
the code for each run and send the codes in order. To avoid the



Chapter 6. Saving Space 73

problem of having to gather frequency data for the whole page,
a pre-prepared master code table is used, upon which everyone
agrees. The table has been built by gathering frequencies from
thousands of text documents in several languages and typefaces,
and then collating the frequencies of the various black and white
runs.

Here is the table of codes for black and white runs of lengths 0
to 63. (We need length 0 because a line is always assumed to begin
white, and a zero-length white run is required if the line actually
begins black.)

Run White Black Run White Black
0 00110101 0000110111 32 00011011 000001101010
1 0000111 010 33 00010010 000001101011
2 0111 11 34 00010011 000011010010
3 1000 10 35 00010100 000011010011
4 1011 011 36 00010101 000011010100
5 1100 0011 37 00010110 000011010101
6 1110 0010 38 00010111 000011010110
7 1111 00011 39 00101000 000011010111
8 1011 000101 40 00101001 000001101100
9 10100 000100 41 00101010 000001101101
10 00111 0000100 42 00101011 000011011010
11 01000 0000101 43 00101100 000011011011
12 001000 0000111 44 00101101 000001010100
13 000011 00000100 45 00000100 000001010101
14 110100 00000111 46 00000101 000001010110
15 110101 000011000 47 00001010 000001010111
16 101010 0000010111 48 0000101 00001100100
17 101011 0000011000 49 01010010 000001100101
18 0100111 0000001000 50 01010011 000001010010
19 0001100 00001100111 51 01010100 000001010011
20 0001000 00001101000 52 01010101 000000100100
21 0010111 00001101100 53 00100100 000000110111
22 00000011 00000110111 54 00100101 000000111000
23 0000100 00000101000 55 01011000 000000100111
24 0101000 00000010111 56 01011001 000000101000
25 0101011 00000011000 57 01011010 000001011000
26 0010011 000011001010 58 01011011 000001011001
27 0100100 000011001011 59 01001010 000000101011



74 Chapter 6. Saving Space

28 0011000 000011001100 60 00110010 000000101100
29 00000010 000011001101 61 00110010 000001011010
30 00000011 000001101000 62 00110011 000001100110
31 00011010 000001101001 63 00110100 000001100111

Notice that the prefix property applies only to alternating black
and white codes. There is never a black code followed by a black
code or a white code followed by a white code. The shortest codes
are reserved for the most common runs – the black ones of length
two and three. We can write out the codes for the first two lines of
our image by counting the pixels manually:

Run length Colour Bit pattern Pattern length
37 white 00010110 8
1 white 0000111 7
9 black 000100 6
6 white 1110 4
1 black 010 3
7 white 1111 4
3 black 10 2
6 white 1110 4
2 white 0111 4

So we transmit the bit pattern 00010110 0000111 000100 1110
010 1111 10 1110 0111. The number of bits required to transmit
the image has dropped from 37× 2 = 74 to 8 + 7 + 6 + 4 + 3 + 4 +
2 + 4 + 2 + 4 = 46. Due to the preponderance of white space in
written text (blank lines, spaces between words, and page margins),
faxes can often be compressed to less than twenty per cent of their
original size. Modern fax systems which take advantage of the fact
that successive lines are often similar can reduce this to five per
cent.

Of course, we often want more than just black and white. (Even
black and white television was not really just black and white –
there were shades of grey.) How can we compress grey and colour
photographic images? The reversible (lossless) compression we
have used so far tends not to work well, so we look at methods
which do not retain all the information in an image. This is known
as lossy compression. One option is simply to use fewer colours.
Figure A on page 76 shows a picture reduced from the original to
64, then 8, then 2 greys. We see a marked decrease in size, but the



Chapter 6. Saving Space 75

quality reduces rapidly. On the printed page, we can certainly see
that 8 and 2 greys are too few, but 64 seems alright. On a computer
screen, you would see that even 64 is a noticeable decrease in
quality.

If we can’t reduce the number of greys with a satisfactory result,
what about the resolution? Let us try discarding one out of every
two pixels in each row of the original, and one out of every two
pixels in each column. Then we will go further and discard three
from every four, and finally seven from every eight. The result is
Figure B. In these examples, we removed some information and
then scaled up the image again when printing it on the page. Again,
the first reduction is not too bad – at least at the printed size of
this book. The 3/4 is a little obvious, and the 7/8 is dreadful.
Algorithms have been devised which can take the images which
have had data discarded like those above and, when scaling them
back to normal size, attempt to smooth the image. This will reduce
the “blocky” look, but it can lead to indistinctness. Figure C shows
the same images as Figure B, displayed using a modern smoothing
method.

Finally, Figure D shows the images compressed using an algo-
rithm especially intended for photographic use, the JPEG (Joint Pho-
tographic Experts Group) algorithm, first conceived in the 1980s. At
“75% quality”, the image is down to nineteen per cent of its original
size and almost indistinguishable from the original.



76 Chapter 6. Saving Space

original – 100% 64 greys – 40%

8 greys – 14% 2 greys – 5%
Figure A

all pixels 1/2 discarded

3/4 discarded 7/8 discarded
Figure B



Chapter 6. Saving Space 77

all pixels 1/2 discarded

3/4 discarded 7/8 discarded
Figure C

original “75% quality” – 19%

“50% quality” – 11% “25% quality” – 9%
Figure D



78 Chapter 6. Saving Space

Problems

Solutions on page 154.

1. Count the frequencies of the characters in this piece of text
and assign them to the Huffman codes, filling in the following
table. Then encode the text up to “more lightly.”.

’I have a theory which I suspect is rather
immoral,’ Smiley went on, more lightly. ’Each of us
has only a quantum of compassion. That if we
lavish our concern on every stray cat, we never get
to the centre of things.’

Letter Frequency Code Letter Frequency Code
111 110100
100 110011
1011 110010
0111 110001
0110 010111
0100 010101
0011 01010000
0010 01010001
0000 01010010
11011 01010011
10101 01011000
10100 01011001
00011 01011010
110101 01011011

2. Consider the following frequency table and text. Decode it.

Letter Frequency Code Letter Frequency Code
space 20 111 s 2 00011
e 12 100 d 2 110101
t 9 1011 T 1 110100
h 7 0111 n 1 110011
o 7 0110 w 1 110010
m 6 0100 p 1 110001
r 5 0011 b 1 010111



Chapter 6. Saving Space 79

a 4 0010 l 1 010101
f 4 0000 v 1 01010000
c 4 11011 y 1 01010001
u 4 10101 . 1 01010010
i 3 10100

1101000111100001110011100100011100111010001100100
1001100110110001111111001001111010011011011111100
1000111001110100001011010110011110101110001111011
0000001110110110011011101001010101110110111111000
1101110101000000001110000011000111110110111100010
0111011011011101011110001010110100010100001001101
0111100101011111101101111001111011101000100100111
1011011110001010001111011011011110111010100110101
0010

3. Encode the following fax image. There is no need to use zero-
length white runs at the beginning of lines starting with a
black pixel.

4. Decode the following fax image to the same 37x15 grid. There
are no zero-length white runs at the beginning of lines starting
with a black pixel.

0001011000001110001111110001111000001110000001001
0110000100100000010001111111001010001011001001111
1110010000011111111011011110111111011111111011000
0111111100100111111011110111111100100000111000100
1000111011110111000100011100010010001110111101110
0010001111111001001111110111101111111001000001111
1111011011111101111011111111011000011111111011011
1101110100111111110110000111111110110111011110011
1000111110110000111000010010000000100100000010001
110000111000111111001011100010101100010110


	Saving Space

